Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
Ther Deliv ; 11(9): 541-546, 2020 09.
Article in English | MEDLINE | ID: covidwho-2319552

ABSTRACT

The present industry update covers the period 1-31 May 2020, with information sourced from company press releases, regulatory and patent agencies as well as scientific literature.


Subject(s)
Drug Delivery Systems/trends , Viral Vaccines , COVID-19 Vaccines , Clinical Trials as Topic , Coronavirus Infections/prevention & control , Device Approval , Drug Industry , Humans , Nanostructures , Viral Vaccines/administration & dosage , Viral Vaccines/pharmacokinetics , Viral Vaccines/supply & distribution
2.
Poult Sci ; 102(4): 102501, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2287484

ABSTRACT

Since 1999, QX-like (GI-19) avian infectious bronchitis viruses have been the predominant strains in China till now. Vaccination is the most effective way to control the disease, while live attenuated vaccine is widely used. In the current research, we evaluated the effect of several monovalent and bivalent live IBV vaccines in young chickens against the QX-like (GI-19) IBV infection. The results showed that monovalent 4/91 and bivalent Ma5+LDT3 vaccines could provide efficient protection in day-old chickens that reduced morbidity and mortality, ameliorated histopathology lesions, and reduced viral loads were observed. These data suggest that vaccination through nasal route with monovalent 4/91 or bivalent Ma5+LDT3 in day-old chickens could serve a safe and effective vaccination strategy for controlling QX-like (GI-19) infectious bronchitis virus.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Animals , Chickens , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Poultry Diseases/prevention & control , Vaccine Efficacy , Vaccines, Attenuated/administration & dosage , Viral Vaccines/administration & dosage , Age Factors
3.
JAMA ; 328(14): 1415-1426, 2022 10 11.
Article in English | MEDLINE | ID: covidwho-2084927

ABSTRACT

Importance: Data about the association of COVID-19 vaccination and prior SARS-CoV-2 infection with risk of SARS-CoV-2 infection and severe COVID-19 outcomes may guide prevention strategies. Objective: To estimate the time-varying association of primary and booster COVID-19 vaccination and prior SARS-CoV-2 infection with subsequent SARS-CoV-2 infection, hospitalization, and death. Design, Setting, and Participants: Cohort study of 10.6 million residents in North Carolina from March 2, 2020, through June 3, 2022. Exposures: COVID-19 primary vaccine series and boosters and prior SARS-CoV-2 infection. Main Outcomes and Measures: Rate ratio (RR) of SARS-CoV-2 infection and hazard ratio (HR) of COVID-19-related hospitalization and death. Results: The median age among the 10.6 million participants was 39 years; 51.3% were female, 71.5% were White, and 9.9% were Hispanic. As of June 3, 2022, 67% of participants had been vaccinated. There were 2 771 364 SARS-CoV-2 infections, with a hospitalization rate of 6.3% and mortality rate of 1.4%. The adjusted RR of the primary vaccine series compared with being unvaccinated against infection became 0.53 (95% CI, 0.52-0.53) for BNT162b2, 0.52 (95% CI, 0.51-0.53) for mRNA-1273, and 0.51 (95% CI, 0.50-0.53) for Ad26.COV2.S 10 months after the first dose, but the adjusted HR for hospitalization remained at 0.29 (95% CI, 0.24-0.35) for BNT162b2, 0.27 (95% CI, 0.23-0.32) for mRNA-1273, and 0.35 (95% CI, 0.29-0.42) for Ad26.COV2.S and the adjusted HR of death remained at 0.23 (95% CI, 0.17-0.29) for BNT162b2, 0.15 (95% CI, 0.11-0.20) for mRNA-1273, and 0.24 (95% CI, 0.19-0.31) for Ad26.COV2.S. For the BNT162b2 primary series, boosting in December 2021 with BNT162b2 had the adjusted RR relative to primary series of 0.39 (95% CI, 0.38-0.40) and boosting with mRNA-1273 had the adjusted RR of 0.32 (95% CI, 0.30-0.34) against infection after 1 month and boosting with BNT162b2 had the adjusted RR of 0.84 (95% CI, 0.82-0.86) and boosting with mRNA-1273 had the adjusted RR of 0.60 (95% CI, 0.57-0.62) after 3 months. Among all participants, the adjusted RR of Omicron infection compared with no prior infection was estimated at 0.23 (95% CI, 0.22-0.24) against infection, and the adjusted HRs were 0.10 (95% CI, 0.07-0.14) against hospitalization and 0.11 (95% CI, 0.08-0.15) against death after 4 months. Conclusions and Relevance: Receipt of primary COVID-19 vaccine series compared with being unvaccinated, receipt of boosters compared with primary vaccination, and prior infection compared with no prior infection were all significantly associated with lower risk of SARS-CoV-2 infection (including Omicron) and resulting hospitalization and death. The associated protection waned over time, especially against infection.


Subject(s)
COVID-19 , Viral Vaccines , Ad26COVS1 , Adult , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Cohort Studies , Female , Humans , Male , SARS-CoV-2 , Vaccination , Viral Vaccines/administration & dosage
4.
Viruses ; 12(1)2020 01 20.
Article in English | MEDLINE | ID: covidwho-1969491

ABSTRACT

Middle East respiratory syndrome (MERS) is an acute, high-mortality-rate, severe infectious disease caused by an emerging MERS coronavirus (MERS-CoV) that causes severe respiratory diseases. The continuous spread and great pandemic potential of MERS-CoV make it necessarily important to develop effective vaccines. We previously demonstrated that the application of Gram-positive enhancer matrix (GEM) particles as a bacterial vector displaying the MERS-CoV receptor-binding domain (RBD) is a very promising MERS vaccine candidate that is capable of producing potential neutralization antibodies. We have also used the rabies virus (RV) as a viral vector to design a recombinant vaccine by expressing the MERS-CoV S1 (spike) protein on the surface of the RV. In this study, we compared the immunological efficacy of the vaccine candidates in BALB/c mice in terms of the levels of humoral and cellular immune responses. The results show that the rabies virus vector-based vaccine can induce remarkably earlier antibody response and higher levels of cellular immunity than the GEM particles vector. However, the GEM particles vector-based vaccine candidate can induce remarkably higher antibody response, even at a very low dose of 1 µg. These results indicate that vaccines constructed using different vaccine vector platforms for the same pathogen have different rates and trends in humoral and cellular immune responses in the same animal model. This discovery not only provides more alternative vaccine development platforms for MERS-CoV vaccine development, but also provides a theoretical basis for our future selection of vaccine vector platforms for other specific pathogens.


Subject(s)
Coronavirus Infections/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cell Line , Coronavirus Infections/prevention & control , Genetic Vectors , Humans , Immunization , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lactococcus lactis/genetics , Mice , Mice, Inbred BALB C , Middle East Respiratory Syndrome Coronavirus/genetics , Rabies virus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Vaccines/administration & dosage
7.
EBioMedicine ; 76: 103841, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1649699

ABSTRACT

Currently licensed COVID-19 vaccines are all designed for intramuscular (IM) immunization. However, vaccination today failed to prevent the virus infection through the upper respiratory tract, which is partially due to the absence of mucosal immunity activation. Despite the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, the next generation of COVID-19 vaccine is in demand and intranasal (IN) vaccination method has been demonstrated to be potent in inducing both mucosal and systemic immune responses. Presently, although not licensed, various IN vaccines against SARS-CoV-2 are under intensive investigation, with 12 candidates reaching clinical trials at different phases. In this review, we give a detailed description about current status of IN COVID-19 vaccines, including virus-vectored vaccines, recombinant subunit vaccines and live attenuated vaccines. The ongoing clinical trials for IN vaccines are highlighted. Additionally, the underlying mechanisms of mucosal immunity and potential mucosal adjuvants and nasal delivery devices are also summarized.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Administration, Intranasal , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Clinical Trials as Topic , Humans , Immunity, Mucosal , SARS-CoV-2/isolation & purification , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
8.
Biochemistry ; 60(46): 3449-3451, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1590174

ABSTRACT

Single-particle cryogenic electron microscopy (cryo-EM), whose full power was not realized until the advent of powerful detectors in 2012, has a unique position as a method of structure determination as it is capable of providing information about not only the structure but also the dynamical features of biomolecules. This information is of special importance in understanding virus-host interaction and explains the crucial role of cryo-EM in the efforts to find vaccinations and cures for pandemics the world has experienced in the past decade.


Subject(s)
Cryoelectron Microscopy , Host Microbial Interactions , Single Molecule Imaging , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Dengue/epidemiology , Dengue/prevention & control , Dengue/virology , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/virology , Humans , Pandemics/prevention & control , Viral Vaccines/administration & dosage , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/virology
9.
Front Cell Infect Microbiol ; 10: 596166, 2020.
Article in English | MEDLINE | ID: covidwho-1574497

ABSTRACT

Viral infections continue to cause considerable morbidity and mortality around the world. Recent rises in these infections are likely due to complex and multifactorial external drivers, including climate change, the increased mobility of people and goods and rapid demographic change to name but a few. In parallel with these external factors, we are gaining a better understanding of the internal factors associated with viral immunity. Increasingly the gastrointestinal (GI) microbiome has been shown to be a significant player in the host immune system, acting as a key regulator of immunity and host defense mechanisms. An increasing body of evidence indicates that disruption of the homeostasis between the GI microbiome and the host immune system can adversely impact viral immunity. This review aims to shed light on our understanding of how host-microbiota interactions shape the immune system, including early life factors, antibiotic exposure, immunosenescence, diet and inflammatory diseases. We also discuss the evidence base for how host commensal organisms and microbiome therapeutics can impact the prevention and/or treatment of viral infections, such as viral gastroenteritis, viral hepatitis, human immunodeficiency virus (HIV), human papilloma virus (HPV), viral upper respiratory tract infections (URTI), influenza and SARS CoV-2. The interplay between the gastrointestinal microbiome, invasive viruses and host physiology is complex and yet to be fully characterized, but increasingly the evidence shows that the microbiome can have an impact on viral disease outcomes. While the current evidence base is informative, further well designed human clinical trials will be needed to fully understand the array of immunological mechanisms underlying this intricate relationship.


Subject(s)
Dysbiosis/virology , Microbiota/immunology , Probiotics/therapeutic use , Virus Diseases/immunology , Virus Diseases/microbiology , Animals , COVID-19/immunology , Dysbiosis/immunology , Gastrointestinal Microbiome/immunology , Host Microbial Interactions , Humans , SARS-CoV-2/isolation & purification , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
10.
J Virol ; 96(3): e0150421, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1546442

ABSTRACT

In the age of COVID, nucleic acid vaccines have garnered much attention, at least in part, because of the simplicity of construction, production, and flexibility to adjust and adapt to an evolving outbreak. Orthopoxviruses remain a threat on multiple fronts, especially as emerging zoonoses. In response, we developed a DNA vaccine, termed 4pox, that protected nonhuman primates against monkeypox virus (MPXV)-induced severe disease. Here, we examined the protective efficacy of the 4pox DNA vaccine delivered by intramuscular (i.m.) electroporation (EP) in rabbits challenged with aerosolized rabbitpox virus (RPXV), a model that recapitulates the respiratory route of exposure and low dose associated with natural smallpox exposure in humans. We found that 4pox-vaccinated rabbits developed immunogen-specific antibodies, including neutralizing antibodies, and did not develop any clinical disease, indicating protection against aerosolized RPXV. In contrast, unvaccinated animals developed significant signs of disease, including lesions, and were euthanized. These findings demonstrate that an unformulated, nonadjuvanted DNA vaccine delivered i.m. can protect against an aerosol exposure. IMPORTANCE The eradication of smallpox and subsequent cessation of vaccination have left a majority of the population susceptible to variola virus or other emerging poxviruses. This is exemplified by human monkeypox, as evidenced by the increase in reported endemic and imported cases over the past decades. Therefore, a malleable vaccine technology that can be mass produced and does not require complex conditions for distribution and storage is sought. Herein, we show that a DNA vaccine, in the absence of a specialized formulation or adjuvant, can protect against a lethal aerosol insult of rabbitpox virus.


Subject(s)
Nucleic Acid-Based Vaccines/immunology , Orthopoxvirus/immunology , Poxviridae Infections/prevention & control , Vaccinia virus/immunology , Vaccinia/prevention & control , Viral Proteins/immunology , Viral Vaccines/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Dose-Response Relationship, Immunologic , Electroporation , Female , Immunization/methods , Immunogenicity, Vaccine , Lymphocyte Activation/immunology , Nucleic Acid-Based Vaccines/administration & dosage , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/immunology , Rabbits , Vaccines, DNA/immunology , Vaccinia virus/genetics , Viral Vaccines/administration & dosage
11.
Biomed Pharmacother ; 144: 112282, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1517062

ABSTRACT

Six months after the publication of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) sequence, a record number of vaccine candidates were listed, and quite a number of them have since been approved for emergency use against the novel coronavirus disease 2019 (COVID-19). This unprecedented pharmaceutical feat did not only show commitment, creativity and collaboration of the scientific community, but also provided a swift solution that prevented global healthcare system breakdown. Notwithstanding, the available data show that most of the approved COVID-19 vaccines protect only a proportion of recipients against severe disease but do not prevent clinical manifestation of COVID-19. There is therefore the need to probe further to establish whether these vaccines can induce sterilizing immunity, otherwise, COVID-19 vaccination would have to become a regular phenomenon. The emergence of SARS-CoV-2 variants could further affect the capability of the available COVID-19 vaccines to prevent infection and protect recipients from a severe form of the disease. These notwithstanding, data about which vaccine(s), if any, can confer sterilizing immunity are unavailable. Here, we discuss the immune responses to viral infection with emphasis on COVID-19, and the specific adaptive immune response to SARS-CoV-2 and how it can be harnessed to develop COVID-19 vaccines capable of conferring sterilizing immunity. We further propose factors that could be considered in the development of COVID-19 vaccines capable of stimulating sterilizing immunity. Also, an old, but effective vaccine development technology that can be applied in the development of COVID-19 vaccines with sterilizing immunity potential is reviewed.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , T-Lymphocytes, Helper-Inducer/immunology , COVID-19 Vaccines/administration & dosage , Humans , SARS-CoV-2/drug effects , T-Lymphocytes, Helper-Inducer/drug effects , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
13.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1481965

ABSTRACT

Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.


Subject(s)
Coronavirus Infections/prevention & control , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , RNA, Viral/administration & dosage , Replicon , Viral Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Defective Viruses/genetics , Defective Viruses/immunology , Female , Gene Deletion , Genes, env , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/pathogenicity , RNA, Viral/genetics , RNA, Viral/immunology , Vaccines, DNA , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology , Virulence/genetics , Virulence/immunology
15.
Int J Mol Sci ; 22(3)2021 Jan 24.
Article in English | MEDLINE | ID: covidwho-1389388

ABSTRACT

The prevention and control of infectious diseases is crucial to the maintenance and protection of social and public healthcare. The global impact of SARS-CoV-2 has demonstrated how outbreaks of emerging and re-emerging infections can lead to pandemics of significant public health and socio-economic burden. Vaccination is one of the most effective approaches to protect against infectious diseases, and to date, multiple vaccines have been successfully used to protect against and eradicate both viral and bacterial pathogens. The main criterion of vaccine efficacy is the induction of specific humoral and cellular immune responses, and it is well established that immunogenicity depends on the type of vaccine as well as the route of delivery. In addition, antigen delivery to immune organs and the site of injection can potentiate efficacy of the vaccine. In light of this, microvesicles have been suggested as potential vehicles for antigen delivery as they can carry various immunogenic molecules including proteins, nucleic acids and polysaccharides directly to target cells. In this review, we focus on the mechanisms of microvesicle biogenesis and the role of microvesicles in infectious diseases. Further, we discuss the application of microvesicles as a novel and effective vaccine delivery system.


Subject(s)
COVID-19/prevention & control , Extracellular Vesicles/immunology , Immunologic Factors/immunology , SARS-CoV-2/immunology , Viral Vaccines/administration & dosage , Animals , COVID-19/immunology , Drug Delivery Systems/methods , Humans , Vaccination/methods , Viral Vaccines/immunology
16.
Nat Commun ; 12(1): 4636, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1347938

ABSTRACT

Chikungunya virus (CHIKV) is a reemerging mosquito-borne virus that causes swift outbreaks. Major concerns are the persistent and disabling polyarthralgia in infected individuals. Here we present the results from a first-in-human trial of the candidate simian adenovirus vectored vaccine ChAdOx1 Chik, expressing the CHIKV full-length structural polyprotein (Capsid, E3, E2, 6k and E1). 24 adult healthy volunteers aged 18-50 years, were recruited in a dose escalation, open-label, nonrandomized and uncontrolled phase 1 trial (registry NCT03590392). Participants received a single intramuscular injection of ChAdOx1 Chik at one of the three preestablished dosages and were followed-up for 6 months. The primary objective was to assess safety and tolerability of ChAdOx1 Chik. The secondary objective was to assess the humoral and cellular immunogenicity. ChAdOx1 Chik was safe at all doses tested with no serious adverse reactions reported. The vast majority of solicited adverse events were mild or moderate, and self-limiting in nature. A single dose induced IgG and T-cell responses against the CHIKV structural antigens. Broadly neutralizing antibodies against the four CHIKV lineages were found in all participants and as early as 2 weeks after vaccination. In summary, ChAdOx1 Chik showed excellent safety, tolerability and 100% PRNT50 seroconversion after a single dose.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chikungunya Fever/immunology , Chikungunya virus/immunology , Viral Vaccines/immunology , Adolescent , Adult , Chikungunya Fever/prevention & control , Chikungunya Fever/virology , Chikungunya virus/classification , Chikungunya virus/physiology , Cytokines/immunology , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Fatigue/chemically induced , Female , Headache/chemically induced , Humans , Immunoglobulin G/immunology , Injections, Intramuscular , Male , Middle Aged , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Vaccination/methods , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Young Adult
17.
Drug Deliv Transl Res ; 11(3): 748-787, 2021 06.
Article in English | MEDLINE | ID: covidwho-1343054

ABSTRACT

The host immune system is highly compromised in case of viral infections and relapses are very common. The capacity of the virus to destroy the host cell by liberating its own DNA or RNA and replicating inside the host cell poses challenges in the development of antiviral therapeutics. In recent years, many new technologies have been explored for diagnosis, prevention, and treatment of viral infections. Nanotechnology has emerged as one of the most promising technologies on account of its ability to deal with viral diseases in an effective manner, addressing the limitations of traditional antiviral medicines. It has not only helped us to overcome problems related to solubility and toxicity of drugs, but also imparted unique properties to drugs, which in turn has increased their potency and selectivity toward viral cells against the host cells. The initial part of the paper focuses on some important proteins of influenza, Ebola, HIV, herpes, Zika, dengue, and corona virus and those of the host cells important for their entry and replication into the host cells. This is followed by different types of nanomaterials which have served as delivery vehicles for the antiviral drugs. It includes various lipid-based, polymer-based, lipid-polymer hybrid-based, carbon-based, inorganic metal-based, surface-modified, and stimuli-sensitive nanomaterials and their application in antiviral therapeutics. The authors also highlight newer promising treatment approaches like nanotraps, nanorobots, nanobubbles, nanofibers, nanodiamonds, nanovaccines, and mathematical modeling for the future. The paper has been updated with the recent developments in nanotechnology-based approaches in view of the ongoing pandemic of COVID-19.Graphical abstract.


Subject(s)
Antiviral Agents/administration & dosage , Drug Carriers , Nanomedicine , Nanoparticles , Polymers/chemistry , Vaccination , Viral Vaccines/administration & dosage , Virus Diseases/prevention & control , Antiviral Agents/chemistry , COVID-19 Vaccines/administration & dosage , Drug Compounding , Humans , Viral Vaccines/chemistry , Virus Diseases/immunology , Virus Diseases/virology
18.
Viruses ; 13(7)2021 06 23.
Article in English | MEDLINE | ID: covidwho-1289015

ABSTRACT

A 59-year-old male with follicular lymphoma treated by anti-CD20-mediated B-cell depletion and ablative chemotherapy was hospitalized with a COVID-19 infection. Although the patient did not develop specific humoral immunity, he had a mild clinical course overall. The failure of all therapeutic options allowed infection to persist nearly 300 days with active accumulation of SARS-CoV-2 virus mutations. As a rescue therapy, an infusion of REGEN-COV (10933 and 10987) anti-spike monoclonal antibodies was performed 270 days from initial diagnosis. Due to partial clearance after the first dose (2.4 g), a consolidation dose (8 g) was infused six weeks later. Complete virus clearance could then be observed over the following month, after he was vaccinated with the Pfizer-BioNTech anti-COVID-19 vaccination. The successful management of this patient required prolonged enhanced quarantine, monitoring of virus mutations, pioneering clinical decisions based upon close consultation, and the coordination of multidisciplinary experts in virology, immunology, pharmacology, input from REGN, the FDA, the IRB, the health care team, the patient, and the patient's family. Current decisions to take revolve around patient's follicular lymphoma management, and monitoring for virus clearance persistence beyond disappearance of REGEN-COV monoclonal antibodies after anti-SARS-CoV-2 vaccination. Overall, specific guidelines for similar cases should be established.


Subject(s)
Antibodies, Monoclonal/therapeutic use , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19/complications , Humans , Immunity, Humoral , Lymphocyte Depletion , Lymphoma, Follicular/drug therapy , Lymphoma, Follicular/therapy , Male , Middle Aged , SARS-CoV-2/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
19.
Int J Mol Sci ; 22(13)2021 Jun 28.
Article in English | MEDLINE | ID: covidwho-1288899

ABSTRACT

Viral-associated respiratory infectious diseases are one of the most prominent subsets of respiratory failures, known as viral respiratory infections (VRI). VRIs are proceeded by an infection caused by viruses infecting the respiratory system. For the past 100 years, viral associated respiratory epidemics have been the most common cause of infectious disease worldwide. Due to several drawbacks of the current anti-viral treatments, such as drug resistance generation and non-targeting of viral proteins, the development of novel nanotherapeutic or nano-vaccine strategies can be considered essential. Due to their specific physical and biological properties, nanoparticles hold promising opportunities for both anti-viral treatments and vaccines against viral infections. Besides the specific physiological properties of the respiratory system, there is a significant demand for utilizing nano-designs in the production of vaccines or antiviral agents for airway-localized administration. SARS-CoV-2, as an immediate example of respiratory viruses, is an enveloped, positive-sense, single-stranded RNA virus belonging to the coronaviridae family. COVID-19 can lead to acute respiratory distress syndrome, similarly to other members of the coronaviridae. Hence, reviewing the current and past emerging nanotechnology-based medications on similar respiratory viral diseases can identify pathways towards generating novel SARS-CoV-2 nanotherapeutics and/or nano-vaccines.


Subject(s)
Antiviral Agents/chemistry , Drug Carriers/chemistry , Nanomedicine , Respiratory Tract Infections/pathology , Viral Vaccines/chemistry , Virus Diseases/pathology , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/pathology , COVID-19/therapy , COVID-19/virology , Humans , Immune System/metabolism , Respiratory Tract Infections/therapy , Respiratory Tract Infections/virology , SARS-CoV-2/isolation & purification , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Virus Diseases/immunology , Virus Diseases/prevention & control , Virus Diseases/therapy
20.
Life Sci ; 280: 119744, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1281492

ABSTRACT

Viral respiratory tract infections have significantly impacted global health as well as socio-economic growth. Respiratory viruses such as the influenza virus, respiratory syncytial virus (RSV), and the recent SARS-CoV-2 infection (COVID-19) typically infect the upper respiratory tract by entry through the respiratory mucosa before reaching the lower respiratory tract, resulting in respiratory disease. Generally, vaccination is the primary method in preventing virus pathogenicity and it has been shown to remarkably reduce the burden of various infectious diseases. Nevertheless, the efficacy of conventional vaccines may be hindered by certain limitations, prompting the need to develop novel vaccine delivery vehicles to immunize against various strains of respiratory viruses and to mitigate the risk of a pandemic. In this review, we provide an insight into how polymer-based nanoparticles can be integrated with the development of vaccines to effectively enhance immune responses for combating viral respiratory tract infections.


Subject(s)
Nanoparticles/chemistry , Polymers/chemistry , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Vaccination , Viral Vaccines/administration & dosage , Animals , COVID-19/prevention & control , COVID-19/virology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Drug Carriers/chemistry , Humans , Influenza, Human/prevention & control , Influenza, Human/virology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Vaccination/methods , Viral Vaccines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL